
A Polynomial Time
Algorithm for 3SAT

Robert Quigley

Introduction

05

Introduce the problem and the
approach

Algorithm Goals02
Discuss what aspects of an
algorithm would be valuable

The Algorithm03
Explore the means to achieve the
goals of the algorithm

Algorithm Proof04
Prove the correctness of the algorithm
assuming accurate lemmas

Lemma Proofs

01

Prove the correctness of the lemmas
required by the algorithm

Sections

Introduction
01

An introduction to the problem
and the approach

Given a group of variables (called terminals), x1, x2, x3, …, xn,

all combined by logical AND operators, logical OR operators, with potential negations and
repetitions, does there exist an assignment, True or False, for each terminal such that the
instance evaluates to True?

If yes, call the instance satisfiable with a satisfying assignment

If no, call the instance unsatisfiable and no satisfying assignment exists

An instance may look like this:

𝑥𝑖 ∨ (¬𝑥 𝑗 ∨ 𝑥𝑘) ∧ (𝑥𝑙 ∨ 𝑥𝑚) ∨ 𝑥𝑛 …

This problem was shown to be NP-Complete by the Cook-Levin Theorem

The Boolean Satisfiability Problem

A representation of the boolean satisfiability problem in which:

● Groups of exactly three terms are combined by logical OR operators, called clauses

● Each clause is combined by logical AND operators

● The same term may appear across clauses, but not within any given clause

An instance of 3SAT usually takes the form

(𝑥𝑖 ∨ ¬𝑥 𝑗 ∨ 𝑥𝑘) ∧ (𝑥𝑙 ∨ 𝑥𝑚 ∨ 𝑥𝑛) …

It was shown in Karp’s 21 NP-Complete Problems that 3SAT is also NP-Complete

The 3SAT Problem

The following changes are made for ease of use:

● The symbol, x, will be removed
● The subscript will become the entire term
● Clauses will be represented as square brackets
● Logical AND operators will be removed
● Logical OR operators will be removed
● Negations will be written as minus signs

For example,

(𝑥𝑖 ∨ ¬𝑥 𝑗 ∨ 𝑥𝑘) ∧ (𝑥𝑙 ∨ 𝑥𝑚 ∨ 𝑥𝑛)

Will be presented as

[i, -j, k], [l, m, n]

Reformatting

Algorithm Goals
02

Discuss what aspects of an
algorithm would be valuable

A clause can block an assignment

Since clauses are combined by logical AND operators, all clauses must
be True for the instance to evaluate to True

If a single clause cannot evaluate to true given an assignment, then
that assignment cannot satisfy the entire instance

Such an assignment occurs when all terms in a clause evaluate to False

For Example,

The clause [-1, 2, 3] blocks all assignments where

x1 = True and x2 = False and x3 = False

Lemma 5.1

Figure 1. An example instance
and assignment table

If all assignments are blocked this implies an
instance is unsatisfiable

Recall an instance is satisfiable iff there exists a
satisfying assignment

A blocked assignment implies it cannot satisfy the
instance

Therefore if all assignments are blocked, no
assignments can satisfy the instance

Note 1

Figure 2. An unsatisfiable instance with
all assignments blocked

Contradicting 1-terminal clauses block all assignments

def: Two clauses are considered contradicting 1-terminal
clauses if (1) each has a single term, (2) each have the same
terminal, and (3) the terminal is positive in one clause and
negated in the other

In other words, contradicting 1-terminal clauses imply the
instance is unsatisfiable

Note 2

Figure 3. All assignments are blocked if
two contradicting 1-terminal clauses exist

● We Know

● An instance is unsatisfiable if all assignments are blocked

● All assignments are blocked if contradicting 1-terminal clauses exist

● Therefore an instance is unsatisfiable if contradicting 1-terminal clauses exist

● We Want

● A polytime way of determining whether or not all assignments are blocked

● A guaranteed way of deriving contradicting 1-terminal clauses iff the instance is

unsatisfiable

● So we’ll do just that

What We Know and Want to Show

The Algorithm
03

Explore the means to achieve the
goals of the algorithm

A clause or group of clauses, A and B, are said to imply
another clause, C, if all of the assignments blocked by C
are blocked by A and B

For example,

The clauses

A := [-3, 1, 2]

B := [1, 2, 3]

block all assignments that are blocked by

C := [1, 2]

A Quick Definition

Figure 4. The assignment tables
for the described clauses

Want to use the given clauses to imply contradicting 1-terminal clauses without processing
clauses of length 4 or greater

Algorithm Goal

Given the following:

● A clause, A
● A clause, B
● A clause, C
● A and B share all the same terms, except for one
● The unshared term is the same terminal which is positive in

one clause and negated in the other
● C is composed of the remaining terms in either clause that are

not that one terminal in either form

Then A and B imply C

The general structure is as follows:

A := [a, b, …, i]

B := [a, b, …, -i]

C := [a, b, …]

Lemma 5.7 [Reduction]

Figure 5. The assignment table
for the described clauses

Given the following

● A clause, C
● A terminal, t, that’s not in C
● A clause, D, containing all of the terms in C appended to t
● A clause, E, containing all of the terms in C appended to -t

Then C implies D and E

The general structure is as follows:

C := [a, b, …]

D := [a, b, …, t]

E := [a, b, …, -t]

Lemma 5.8 [Expansion]

Figure 6. The assignment table
for the described clauses

Given the following

● Two clauses sharing the same terminal which is positive in one clause and negated in the
other

● A clause containing all of the terms from each clause except for the two opposite form
terms

Then the first two clauses imply the third clause

The general structure is as follows:

A := [a, b, …, i]

B := [c, d, …, –i]

→ C := [a, b, …, c, d, …]

Lemma 5.9 [General Lemma 5.7]

Lemma 5.9 Example

Figure 7. The assignment tables
demonstrating an example of

Lemma 5.9

● We can use these rules from Lemma 5.8 and Lemma 5.9 to keep implying new clauses

until we either (1) run out of new clauses or (2) derive contradicting 1-terminal clauses

● (1) in this case, the instance is satisfiable

● (2) in this case, the instance is unsatisfiable

The Idea

(1) For each clause in the instance, C, of length 3 or less:
(a) For each clause in the instance, D, of length 3 or less:

(i) Get all clauses implied by C and D according to Lemma 5.9 and add them to the
instance

(ii) Check if new clause is in the instance, update a flag to indicate a new addition
(b) Use Lemma 5.8 to expand C to all possible clauses of length 3

(2) For each clause in the instance, E, of length 1:
(a) For each clause in the instance, F, of length 1:

(i) if E and F contain the same terminal in which it is positive in one clause and
negated in the other, the clauses are contradicting and the instance is unsatisfiable,
end

(3) Repeat (1) - (2) until no new clauses are added
(4) If it reaches here, the instance is satisfiable, end

The Algorithm
O(n3)
O(n3)
O(32)

O(n3)
O(n2)
O(n3)
O(n3)
O(1)

O(n3)
O(1)

Time Complexity: (3) * (1) * (1.a) * (1.a.ii) = O(n3) * O(n3) * O(n3) * O(n3) = O(n12)

Algorithm Proof
04

Prove the correctness of the
algorithm assuming accurate

lemmas

Want to show

an instance of 3SAT is unsatisfiable ⟺ contradicting 1-terminal clauses can be implied by the
algorithm

1. Contradicting 1-terminal clauses → the instance is unsatisfiable

2. The instance is unsatisfiable → contradicting 1-terminal clauses can be derived

Overview

A 1-terminal clause blocks all assignments that make it evaluate
to false

There are only two possible values for one terminal

Either one of the contradicting 1-terminal clauses block all
assignments with either of the two possible values for the
terminal

Therefore all assignments are blocked and no satisfying
assignment can exist and the instance is unsatisfiable

Contra. 1-t clauses → Unsatisfiability

Figure 8. All assignments are blocked if
two contradicting 1-terminal clauses exist

Oi jeez, buckle in for a ride

Idea:
● By Lemma 5.8 we can expand the given 3-terminal clauses to 2n unique n-terminal clauses

● By Lemma 5.7 we can reduce these n-terminal clauses to contradicting 1-terminal clauses

● Want to show we never have to process clauses of length 4 or greater to imply these
contradicting 1-terminal clauses

● Since the time complexity is bounded by the number of unique 3-terminal clauses, these
contradicting 1-terminal clauses will be implied in polynomial time

Unsatisfiability → Contra. 1-t Clauses

Expanding Given Clauses

Figure 9. An illustration of the ratio of
implied clauses to possible clauses

increasing as clause length increases

Given or implied clauses are represented as
the darker portion and the total portion
represents all possible clauses of a given
length

[a, b, c, …]

[a, b, -c, …]

[a, -b, c, …]

[a, -b, -c, …]

[-a, b, c, …]

[-a, b, -c, …]

[-a, -b, c, …]

[-a, -b, -c, …]

Reducing n-Terminal Clauses
[a, b, …]

[a, -b, …]

[-a, b, …]

[-a, -b …]

[a, …]

[-a, …] …

[a]

[-a]

Figure 10. An illustration of reducing
n-terminal clauses to contradicting

1-terminal clauses

[a, b, c, …]

[-a, b, c, …]

[a, -b, c, …]

[-a, -b, c, …]

[a, b, -c, …]

[-a, b, -c, …]

[a, -b, -c, …]

[-a, -b, -c, …]

Reducing n-Terminal Clauses
[b, c, …]

[-b, c, …]

[b, -c, …]

[-b, -c …]

[c, …]

[-c, …] …

[c]

[-c]

Figure 11. An alternative to figure 10
resulting in different 1-terminal clauses

[a, b, c, …]

[a, b, -c, …]

[a, -b, c, …]

[a, -b, -c, …]

[-a, b, c, …]

[-a, b, -c, …]

[-a, -b, c, …]

[-a, -b, -c, …]

Reducing n-Terminal Clauses
[a, b, …]

[a, -b, …]

[-a, b, …]

[-a, -b …]

[a, …]

[-a, …] …

[a]

[-a]

Figure 12. An illustration showing
1-terminal clauses can be derived from

the (n-1)-terminal clauses

[a, b, c, …]

[a, b, -c, …]

[a, -b, c, …]

[a, -b, -c, …]

[-a, b, c, …]

[-a, b, -c, …]

[-a, -b, c, …]

[-a, -b, -c, …]

Reducing n-Terminal Clauses
[a, b, …]

[a, -b, …]

[-a, b, …]

[-a, -b …]

[a, …]

[-a, …] …

[a]

[-a]

Figure 13. An illustration showing
1-terminal clauses can be derived from

the (n-2)-terminal clauses

[a, b, c]

[a, b, -c]

[a, -b, c]

[a, -b, -c]

[-a, b, c]

[-a, b, -c]

[-a, -b, c]

[-a, -b, -c]

Goal: Reducing 3-Terminal Clauses
[a, b]

[a, -b]

[-a, b]

[-a, -b]

[a]

[-a]

Figure 14. An illustration showing the
reduction of 3-terminal clauses to

1-terminal clauses

…

The n-terminal clauses do not have to be explicitly processed to derive the (n-1)-terminal clauses

Consider the following n-terminal clauses

C := [a, b, c, …]
D := [a, -b, c, …]

Which reduce to the following (n-1)-terminal clause:

E := [a, c, …]

Where C is expanded to from the (n-1)-terminal clause

A := [b, c, …]

Then want to show we can derive E without processing D

Specific Claim

Recall the clauses:

C := [a, b, c, …] of length n
D := [a, -b, c, …] of length n
E := [a, c, …] of length n - 1
A := [b, c, …] of length n - 1

Then want to show we can derive E without processing C

By Lemma 5.9, the clauses A and D can directly imply E

However, D is still of length n and the claim states E can be derived without processing
n-terminal clauses

Small Proof for Specific Claim

We know all clauses of length n were derived by Lemma 5.8 [Expansion] so we have something
like this

Where A, B, C, D, and E are clauses with the following restrictions:
● A is of length n - 1
● B is of length n - 1
● C is of length n
● D is of length n
● E is of length n - 1 (or n for future reference)

Assume this is true for now, the proof is in the last section

Use Lemma 5.19

Figure 15. An illustration of the described clauses

Thanks to Lemma 5.19, we don’t have to process any clauses of length n to derive all the clauses
of length n-1 we need

In fact, we can generalize this and take it a step further

Implication

Given any two implied clauses of length k, say A and B, that imply a clause of length k or k - 1,
say C, then we can directly derive C by processing clauses with a maximum length of k - 1 where
4 ≤ k ≤ n (with this restriction, k is guaranteed to be an implied clause)

This banks on the idea that any implied clauses can only exist because they were derived by
existing/implied clauses and we can use those clauses to derive any clauses that would be implied

Claim

After applying Lemma 5.19, we have all the needed clauses of length n - 1 and the next step is to
further reduce these to clauses of length n - 2 using Lemma 5.7

Using Lemma 5.7 requires two clauses of length k and outputs one clause of length k - 1

Since all clauses of length n - 1 are implied, we know the n-1 clauses will fall into these cases:

● Both clauses were derived by Lemma 5.8 [Expansion]

● Both clauses were derived by Lemma 5.9 [Reduction/Implication]

● Each clause was derived in a different manner

Let’s explore how we can handle each case

Supporting the Claim

This was already seen in Lemma 5.19

Where the clauses are as follows
● A is of length k - 1
● B is of length k - 1
● C is of length k
● D is of length k
● E is of length k or k - 1

Then we can derive E by processing clauses with a maximum length of k - 1

Both Clauses Derived by Lemma 5.8

Figure 16. An illustration of the described clauses

Both Clauses Derived by Lemma 5.9
Use Lemma 5.17

Where the clauses are as follows
● A, B, C, D are of length k - 1
● E, F are of length k
● G is of length k or k - 1

Then we can derive G by processing clauses with a maximum length of k - 1

Figure 17. An illustration of the described clauses

Use Lemma 5.18

Where the clauses are as follows:
● A, B, C are of length k - 1
● D, E are of length k
● F is of length k or k - 1

Then we can derive F by processing clauses with a maximum length of k - 1

One Clause by 5.8 One Clause by 5.9

Figure 18. An illustration of the described clauses

Now we can use Lemmas 5.17, 5.18, and 5.19 to derive all the necessary clauses of length k by
processing clauses with a maximum length of k - 1, assuming the input clauses are of length 4 or
greater

As such we will be left with all the clauses of length 4 - that we need to imply contradicting
1-terminal clauses - by processing clauses of length 3 or less

Problem: We have all of the 4-terminal clauses we need and we want to imply all the 3-terminal
clauses we need, but the aforementioned lemmas require the input clauses to be derived

Applications

We have all the 4-terminal clauses we need

We want to derive all the 3-terminal clauses we’ll need using Lemma 5.7

3-terminal clauses can be derived in the following manner:

● Both input clauses are 4-terminal clauses

● One clause is of length 4 and the other clause is of length 3

● Both input clauses are of length 3 or less

We can disregard the final point because we want to show we can generate all 3-terminal clauses
while processing only clauses of length 3 or less so the claim is vacuously true

Immediate Goals

In this case, both clauses are derived so we can use Lemma 5.17, Lemma 5.18, or Lemma 5.19

Two 4-Terminal Clauses

We can no longer rely on the fact that both input clauses were constructed using other clauses

However, we do know the 4-terminal clause was derived using other clauses

Similarly as before, the 4-terminal clause can be derived one of two ways:

● Using Lemma 5.9 [Reduction/Implication] (which is a superset of 5.7)
● Using Lemma 5.8 [Expansion]

One 3-t and One 4-t Clause

In this case, the path of implications is as follows, use Lemma 5.11

Where the following is true:
● E is the 4-terminal clause
● C is the 3-terminal clause
● A and B are other 3-terminal clauses implying E
● D is a clause of length 3 or 4

Then D can be derived by processing clauses with a maximum length of 3

Using Lemma 5.9

Figure 19. An illustration of the described clauses

In this case, the path of implications is as follows, use Lemma 5.12:

Where the following is true:
● B is the 4-terminal clause
● C is the 3-terminal clause
● A is another 3-terminal clause expanding to B
● D is a clause of length 3 or 4

Then D can be derived by processing clauses with a maximum length of 3

Using Lemma 5.8

Figure 20. An illustration of the described clauses

Now we can derive all the 3-terminal clauses - that we need to derive contradicting 1-terminal
clauses - without processing a clause of length 4 or greater

We continue making all possible implications and because the instance is unsatisfiable (recall
we’re proving unsatisfiable → contradicting 1-terminal clauses will be derived) we will
eventually derive contradicting 1-terminal clauses

Note that we only need the strategies in Lemma 5.8 and Lemma 5.9 because the set of
implications in 5.9 is a superset of the implications in 5.7 and all of the intermediate lemmas
(5.11, 5.12, 5.17, 5.18, and 5.19) rely only on Lemma 5.8 and Lemma 5.9

Results

Recall we want to show
an instance of 3SAT is unsatisfiable ⟺ contradicting 1-terminal clauses can be implied by the
algorithm

1. Contradicting 1-terminal clauses are derived → the instance is unsatisfiable
● Shown true because contradicting 1-terminal clauses block all assignments

2. The instance is unsatisfiable → Contradicting 1-terminal clauses can be derived
● Shown true because if an instance is unsatisfiable then all of the required 3-terminal

clauses - that are needed to imply contradicting 1-terminal clauses - can be derived
without processing a clause of length 4 or greater

Concluding the IFF

Lemma Proofs
05

Prove the correctness of the
lemmas required by the

algorithm

In the following slides, greek letters are used to represent generic sets of terms

For example,

A := [a, b, 𝛽, i]

Where 𝛽 represents any generic set of terms that allow for a valid clause according to Lemma
5.3 (doesn’t contain the same terminal in both positive and negated forms)

However the same term or the same terminal in either form may appear between generic sets.
We may have a clause like

E = [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]

Where a term in 𝛽 may appear negated in 𝛿. In this case, we usually just discard the clause as it
bring no valuable information, but we still treat this case as a possibility in intermediate clauses.

Notation - Generic Sets of Clauses

In the following slides, we use the presence of a term to indicate a length of 1, a greek letter to
indicate the size of that set, and multiple greek letters to indicate intersection between sets

For example, the length of the following clause:

D = [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑒, 𝑓 , 𝜙]

Will be described as:

Length of D = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

Notation - Counting Clause Lengths

A clause can block an assignment

An assignment is considered blocked if it cannot possibly satisfy the instance

Since all clauses are combined by logical AND operators, all clauses must individually be true
for the instance to evaluate to true

If there exists an assignment that forces a clause to evaluate to false, then that assignment
cannot possibly satisfy the instance

Such an assignment exists if it makes every term in the instance false

For example, consider the clause

A := [a, b, c]

This blocks all assignments where

a = b = c = False

Lemma 5.1

For a given instance with n terminals, there are 2n possible assignments

An assignment for this instance assigns values to n terminals

Each terminal has two possible values, True or False

Therefore there are 2n possible assignments

Lemma 5.2

If a clause contains the same terminal in its negated and positive form, it will not block any
assignments

Consider the clause

A := [a, b, …, -a]

Since any one assignment assigns exactly one value to each and every terminal, we know it
assigns a value to a

There are two possible values for a:

a = True
a = False

In the first case, the positive form of the terminal will be true and the clause will be true
In the second case, the negated form of the terminal will be true and the clause will be true

Therefore all possible assignments make this clause true so this clause will block no assignments

Lemma 5.3

Each clause of length k blocks 2n-k assignments.

Consider the generic 𝑘-terminal clause, 𝐶, in an instance with 𝑛 terminals.

As seen in Lemma 5.1, this blocks all assignments where all of the terms evaluate to False

Since the values for 𝑘 terminals are set, there are 𝑛 − 𝑘 terminals left whose values could be
True or False

Since an assignment exists for every possible way to assign values to each terminal, we know an
assignment exists for every possible way to assign a value for these 𝑛 − 𝑘 terminals

There are two possible ways to assign values to each of these 𝑛 − 𝑘 terminals so there are 2n-k
unique assignments blocked by 𝐶

Lemma 5.4

For any clause, 𝐶, if we select a terminal, 𝑡, that’s not in 𝐶 then
half of the assignments blocked by 𝐶 will assign True to 𝑡 and
the other half will assign False to 𝑡

We have a clause, 𝐶, of fixed yet arbitrary length:

𝐶 := [𝑎, 𝑏, 𝑐, ...]

And we have a terminal, t, that’s not in 𝐶

For example, we have the clause

C := [1, 2]

And the terminal, x3

Lemma 5.5

Figure 21. The assignment table of an example
clause C and terminal t as described

For any clause, 𝐶, if we select a terminal, 𝑡, that’s not in 𝐶 then half of the assignments blocked
by 𝐶 will assign True to 𝑡 and the other half will assign False to 𝑡

We have a clause, 𝐶, of fixed yet arbitrary length:

𝐶 := [𝑎, 𝑏, 𝑐, ...]

And we have a terminal, t, that’s not in 𝐶

Want to show half of the assignments blocked by 𝐶 assign True to 𝑡 and the other half assign
False to 𝑡

We know there will be no overlap between these assignments because a single assignment cannot
assign both the values True and False to the same terminal

Now we just have to show that exactly half of the assignments are blocked by assigning either
True or False to 𝑡

Prove Lemma 5.5

Want to show half of the assignments blocked by 𝐶 assign True to 𝑡 and the other half assign
False to 𝑡

We know there will be no overlap between these assignments because a single assignment cannot
assign both the values True and False to the same terminal

Now we just have to show that exactly half of the assignments are blocked by assigning either
True or False to 𝑡

Let’s say there are 𝑘 terms in C, then we know it blocks assignments where all 𝑘 terms evaluate
to False

By Lemma 5.4, this clause blocks 2n-k assignments.

If we fix the value of 𝑡, then there are only 𝑛 − 𝑘 − 1 terminals whose values could be 0 or 1

Since we have two choices per terminal and there are 𝑛 − 𝑘 − 1 terminals, then there are 2n-k-1
assignments blocked by 𝐶 where the value of 𝑡 is fixed

Prove Lemma 5.5

We know there are 2n-k-1 assignments blocked by C where the value of t is fixed

Divide to get the ratio of the number of assignments blocked by adding 𝑡 to the number of
assignments blocked by 𝐶 without 𝑡:

2n-k-1/2n-k

= 2n-k-1-(n-k)

= 2-1

= 1/2
This shows that half of the assignments blocked by 𝐶 assign a fixed value to 𝑡

Since there are two possible values for 𝑡 and each block mutually exclusive halves of the
assignments blocked by 𝐶, the lemma holds

For any clause, 𝐶, if we select a terminal, 𝑡, that’s not in 𝐶 then half of the assignments blocked
by 𝐶 will assign True to 𝑡 and the other half will assign False to 𝐶.

Prove Lemma 5.5

Given a clause, 𝐶, and another clause, 𝐷, such that all of the terms in
𝐶 also exist in 𝐷, then all of the assignments blocked by 𝐷 are also
blocked by 𝐶

For example, say we have the clauses

C := [1, 2]
D := [1, 2, 3]

Then all of the assignments blocked by D are already blocked by C

Intuitively, you can think of it as a shorter clause has fixed values for
some terminals and covers all cases for the remaining terminals, so
when you add more terms to the clause, the blocked assignments get
more specific and fewer assignments are blocked

Lemma 5.6

Figure 22. An example assignment
table for the described clauses

Given the clauses, C and D as described:

C := [𝑎, 𝑏, 𝑐, ...]
D := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ...]

We know that 𝐶 blocks all assignments that cause all the terms to evaluate to False

In other words, 𝐶 blocks all assignments where

𝑎 = 𝑏 = 𝑐 = ... = 𝐹𝑎𝑙𝑠𝑒

Similarly, 𝐷 blocks all assignments where

𝑎 = 𝑏 = 𝑐 = ... = 𝑑 = 𝑒 = 𝑓 = ... = 𝐹𝑎𝑙𝑠𝑒

Clearly all assignments consistent with the terminal assignments from 𝐷 are also consistent with
the terminal assignments from 𝐶

Therefore, every assignment blocked by 𝐷 is also blocked by 𝐶

Prove Lemma 5.6

Given the following:
● A clause, A
● A clause, B
● A clause, C
● A and B share all the same terms, except for one
● The unshared term is the same terminal which is positive in

one clause and negated in the other
● C is composed of the remaining terms in either clause that are

not that one terminal in either form
Then A and B imply C

The general structure is as follows:

A := [a, b, …, i]
B := [a, b, …, -i]

C := [a, b, …]

Lemma 5.7 [Reduction]

Figure 23. An example assignment
table for the described clauses

Recall the described clauses:

A := [a, b, …, i]
B := [a, b, …, -i]

C := [a, b, …]

We know by Lemma 5.5 that if we select a terminal that’s not in 𝐶, say 𝑡, then half of the
assignments blocked by 𝐶 assign True to 𝑡 and the other half of the assignments blocked by 𝐶
assign False to 𝑡

Let this terminal 𝑡 that’s not in 𝐶 be the terminal 𝑖 that’s in 𝐴 and 𝐵

We know that 𝐴 blocks all assignments blocked by 𝐶 where 𝑖 is assigned the value of False

We know that 𝐵 blocks all assignments blocked by 𝐶 where 𝑖 is assigned the value of True

Since 𝐴 and 𝐵 both block mutually exclusive halves of the assignments blocked by 𝐶, we can
say that 𝐴 and 𝐵 imply 𝐶

Prove Lemma 5.7 [Reduction]

Given the following
● A clause, C
● A terminal, t, that’s not in C
● A clause, D, containing all of the terms in C appended to t
● A clause, E, containing all of the terms in C appended to -t

Then C implies D and E

The general structure is as follows:

C := [a, b, …]
D := [a, b, …, t]
E := [a, b, …, -t]

Lemma 5.8 [Expansion]

Figure 24. An example assignment
table for the described clauses

Recall the described clauses:

C := [a, b, …]
D := [a, b, …, t]
E := [a, b, …, -t]

Since t is not in C then by Lemma 5.6 all assignments blocked by D and E are blocked by C

In other words, we can say C implies D and E

Prove Lemma 5.8 [Expansion]

Given the following

● Two clauses sharing the same terminal which is positive in one clause and negated in the
other, say A and B

● A clause containing all of the terms from each clause except for the two opposite form
terms, say C

Then A and B imply C

The general structure is as follows:

A := [a, b, …, i]

B := [c, d, …, –i]

→ C := [a, b, …, c, d, …]

Lemma 5.9 [General Lemma 5.7]

Consider two clauses,

𝐶 := [𝑎, 𝑏, 𝑐, ..., 𝑡]
𝐷 := [𝑑, 𝑒, 𝑓 , ..., −𝑡]

Want to show we can imply a clause consistent with the lemma description:

𝐸 := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ...]

Let’s define some additional clauses:

𝐸′ := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ..., 𝑡]
𝐸′′ := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ..., −𝑡]

Prove Lemma 5.9

Recall the clauses

𝐶 := [𝑎, 𝑏, 𝑐, ..., 𝑡]
𝐷 := [𝑑, 𝑒, 𝑓 , ..., −𝑡]

𝐸 := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ...]
𝐸′ := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ..., 𝑡]

𝐸′′ := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ..., −𝑡]

By Lemma 5.6, we know that 𝐶 implies 𝐸′

By Lemma 5.6, we know that 𝐷 implies 𝐸′′

By Lemma 5.7, since 𝐸′ and 𝐸′′ share all the same terms except for 𝑡, which is positive in one
clause and negated in the other, we can create a new clause composed of all the shared terms in
𝐸′ and 𝐸′′

Such a clause is already defined as 𝐸

Prove Lemma 5.9

Recall the clauses

𝐶 := [𝑎, 𝑏, 𝑐, ..., 𝑡]
𝐷 := [𝑑, 𝑒, 𝑓 , ..., −𝑡]

𝐸 := [𝑎, 𝑏, 𝑐, ..., 𝑑, 𝑒, 𝑓 , ...]

Now there are a couple extra cases to consider:

• There is some overlap between a, b, c, ... and d, e, f, ...
• There is the same terminal that’s positive in a, b, c, ... and negated in d, e, f, ...

First, if the same term exists in a, b, c, ... and d, e, f, ..., then we can just remove one of the
duplicates since one term being true implies an identical term being True.

Second, if the same terminal exists, but is of the opposite form in a, b, c, ... and d, e, f, ... then by
Lemma 5.3, this clause will always be True and thus blocks no assignments. In this case, the
lemma is vacuously true, but we disregard the clause as it is of no value

Prove Lemma 5.9

Given two clauses of lengths 𝑘 and 𝑚 that share a terminal, 𝑡, which is positive in one clause and
negated in the other, you will be able to directly imply clauses of length 𝑚𝑎𝑥 (𝑘, 𝑚) − 1 to (𝑘 + 𝑚
− 2) where the function 𝑚𝑎𝑥 (𝑎, 𝑏) represents the parameter with the greatest value

The smallest clause that can be implied by clauses of length 𝑘 and 𝑚 using Lemma 5.9 occur
when all but one of the terms in one clause exist in the other

As such, the unique terms will come from the clause that’s longer

Removing 𝑡, you are left with 1 less than the maximum of 𝑘 and 𝑚

The largest clause can be implied if there are no terms shared between the two clauses

In this case you subtract 1 from the length of each clause to account for 𝑡 and since no duplicates
will be removed, the resulting clause’s length is 2 less than the sum of the lengths of the clauses

Lemma 5.10

Given the following clauses:

Where the following is true:
● A, B, and C are clauses of length less than k
● E is a clause of length k
● D is a clause of length k or k - 1
● A and B imply E by Lemma 5.9
● E and C imply D by Lemma 5.9

Then D can be derived by processing only clauses of length k - 1 or less

Lemma 5.11

Figure 25. An illustration of the described clauses

Define the clauses in the following manner:

A := [a, b, 𝛽, i]

B := [c, d, 𝛿 -i]

C := [-a, e, f, 𝜙]

Then the following are derived by Lemma 5.9:

E = [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿] (By 𝐴 and 𝐵)

D = [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑒, 𝑓 , 𝜙] (By 𝐶 and E or by F and B)

F = [𝑏, 𝛽, 𝑖, 𝑒, 𝑓 , 𝜙] (By 𝐴 and 𝐶)

Note that C must contain a negated term from E and all of the terms in E come from A or B (not

counting i or -i) and A and B are logically equivalent so we pick one and fix it and say C contains

a negated term from clause A.

Idea: We use an intermediate clause, F, to derive D and we want to show F is shorter than k

Prove Lemma 5.11

We have two cases to consider:

● D is of length k

● D is of length k - 1

Prove Lemma 5.11

Recall the clause D
D = [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑒, 𝑓 , 𝜙]

In this case, we can define k as follows:

𝑘 = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

And we can define the length of F as follows:

length of 𝐹 = 𝑏 + 𝑖 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

Want to show length of F is less than k

Prove 5.11 (D is of length k)

Want to show length of F < k

𝑏 + 𝑖 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙) < 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

→ 𝑖 + 𝛽 + 𝜙 − (𝛽𝜙) < 𝑐 + 𝑑 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

→ 𝑖 < 𝑐 + 𝑑 + 𝛿 − (𝛽𝛿) − (𝛿𝜙) + (𝛽𝛿𝜙)

Note that i has to exist based on the lemma requirements

The inequality is true as long as i exists and at least two terms exist on the R.H.S. so WTS two terms

must exist on the R.H.S.

Prove 5.11 (D is of length k)

Want to show

𝑖 < 𝑐 + 𝑑 + 𝛿 − (𝛽𝛿) − (𝛿𝜙) + (𝛽𝛿𝜙)

Using a Venn Diagram or by other set intuition, the sets of generic terms on the R.H.S. represent the

number of terms in 𝛿 that exist in no other set. The lowest value for this is 0 so the inequality becomes:

𝑖 < 𝑐 + 𝑑
Want to show c and d have to exist

Prove 5.11 (D is of length k)

WTS c and d have to exist. Suppose not, then at maximum either c or d exist and we can redefine
some clauses:

A := [a, b, 𝛽, i]
𝐵 := [𝛿, −𝑖]

D := [a, b, 𝛽, 𝛿]

Notice the maximum size of 𝛿 is 1 because if two terms existed in that set, we could extract them
and use them as c and d, but we know both c and d do not exist.

Since 𝛿 is of size 1, and i is just a single term, we can clearly see that the length of D is the same
as the length of A. This is a contradiction because the lemma states A is of length less than k
and D is a clause of length k.

Therefore both c and d have to exist → the inequality holds → F is shorter than k and we can
derive D by processing clauses with a maximum length of k - 1

Prove 5.11 (D is of length k)

Now we consider the case where D is of length k - 1

We define k in terms of D and want to show F is shorter than k

𝑘 = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙) + 1
length of 𝐹 = 𝑏 + 𝑖 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

WTS length of F is less than k

Similarly to before, this becomes

𝑖 < 𝑐 + 𝑑 + 1

Which is true as long as c or d exist

Want to show c or d have to exist

Prove 5.11 (D is of length k - 1)

Want to show c or d have to exist. Suppose not, then c and d do not exist and we can redefine
some of the clauses:

A := [a, b, 𝛽, i]
𝐵 := [−𝑖]

D := [a, b, 𝛽]

Notice that no terms may exist in 𝛿 because if it contains at least one term then that term can be
extracted and treated as c or d but we know neither c nor d not exist

Since i is exactly one term, we can see the length of D is one less than the length of A. This is a
contradiction because the length of A is given as less than k (so it has a maximum value of k - 1)
and the length of D is given as k - 1 so it cannot be less than the length of A.

Therefore c or d must exist, the inequality holds, F is shorter than k and we can derive D by
processing clauses with a maximum length of k - 1

Prove 5.11 (D is of length k - 1)

Given the aforementioned clauses, we showed we can derive D by processing clauses with a
maximum length k - 1 by using a new clase, F, which is derived using A and C by Lemma 5.9

This is done without loss of generality because we know C must contain a term of the opposite
form of a term in E and all terms in E come from A or B so we pick an arbitrary yet fixed clause,
A, to have the term of the opposite form

Lemma 5.11 Conclusion

Figure 27. An illustration of the described clauses

Consider the following clauses

● A and C are clauses of length less than k
● B is a clause of length k
● D is a clause of length k or k - 1

Then D can be derived by processing clauses with a maximum length of k - 1

Lemma 5.12

Figure 28. An illustration of the described clauses

Let’s define the following clauses:
𝐴 := [𝑎, 𝑏, 𝛽]

𝐵 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐶1 := [-a, e, f, 𝜙]
𝐶2 := [-c, e, f, 𝜙]

𝐷1 := [b, 𝛽, c, d, 𝛿, e, f, 𝜙]
𝐷2 := [a, b, 𝛽, d, 𝛿, e, f, 𝜙]

E := [b, 𝛽, e, f, 𝜙]

Where all of the following are true:
● A expands to B by Lemma 5.8
● B and C1 imply D1 by Lemma 5.9
● B and C2 imply D2 by Lemma 5.9
● C1 or C2 are used based on different possible cases described in the next slide

Prove Lemma 5.12

Given the following clauses

Notice B and C have to share a term of the opposite form in order to imply D

Two cases for this term:

● The term exists in A

● The term does not exist in A

Prove Lemma 5.12

Figure 29. An illustration of the described clauses

Consider case 1, C and A share a term of the opposite form

We can define the clauses as follows:

Given

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐶1 := [-𝑎, e, f, 𝜙]

Implied

𝐷1 := [b, 𝛽, c, d, 𝛿, e, f, 𝜙] (By A and B or by expanding E)
E := [b, 𝛽, e, f, 𝜙] (By A and C1 using Lemma 5.9)

Since C1 and A share a term of the opposite form, we can imply a new clause, E, as shown

Notice all of the terms in E exist in D1 so we can use Lemma 5.8 to expand E to D1

We derived D1 using only clauses A, C1, E, and any clauses between E and D1

Prove Lemma 5.12

Want to show all clauses used to derive D1 are shorter than k

As seen in Lemma 5.8, expanding a clause only outputs clauses of length 1 greater than the
input, so if we have E and we know it’s shorter than k, we will never have to process a clause of
length k or greater to derive D

Note A and C1 are given to be shorter than k in the lemma conditions

Now we just want to show E is shorter than k

We have two cases:

● D is of length k

● D is of length k - 1

Prove Lemma 5.12

Consider case (1a) D is of length k, then we can define k in terms of D and we can define the
length of E as follows:

𝑘 = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)
Length of 𝐸 = 𝑏 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

Want to show length of E < k

 𝑏 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)
<

𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

→ 0 < 𝑐 + 𝑑 + 𝛿 − (𝛽𝛿) − (𝛿𝜙) + (𝛽𝛿𝜙)

Which is true as long as one term exists on the R.H.S.

Prove Lemma 5.12

Want to show at least one term must exist in

𝑐 + 𝑑 + 𝛿 − (𝛽𝛿) − (𝛿𝜙) + (𝛽𝛿𝜙)

Suppose not, then none of those terms exist and we can redefine some clauses:

Recall the clauses used to be defined as

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]

But with the new requirements, the clause B gets redefined:

𝐵 := [𝑎, 𝑏, 𝛽]

Notice A is exactly B. This is a contradiction because the length of A was given to be less than k
and the length of B was given to be k

Therefore at least one term must exist on the R.H.S. of the inequality and the inequality holds

E is shorter than k and we can derive D without processing a clause of length k or greater

Prove Lemma 5.12

Want to show we can derive D by processing clauses with a maximum length of k - 1:

❏ E contains an opposite form term in A

✓ D is of length k

❏ D is of length k - 1

❏ E does not contain an opposite form term in A

Prove Lemma 5.12 Checklist

Consider (1b) where D is of length k - 1

Similarly as before we define k in terms of D and want to show E is shorter than k:

𝑘 = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙) + 1
Length of 𝐸 = 𝑏 + 𝑒 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

The only difference now is k is one greater so the inequality becomes

→ 0 < 𝑐 + 𝑑 + 𝛿 − (𝛽𝛿) − (𝛿𝜙) + (𝛽𝛿𝜙) + 1

Which is clearly always true since the lowest value for the sets of generic terms is 0

Therefore E is shorter than k when D is of length k - 1

Prove Lemma 5.12

Want to show we can derive D by processing clauses with a maximum length of k - 1:

✓ E contains an opposite form term in A

✓ D is of length k

✓ D is of length k - 1

❏ E does not contain an opposite form term in A

Prove Lemma 5.12 Checklist

Consider the case where E does not contain an opposite form term from A

In this case we can define the following clauses:

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐶2 := [-c, e, f, 𝜙]

𝐷2 := [a, b, 𝛽, d, 𝛿, e, f, 𝜙]

Where all of the following are true:

● A expands to B by Lemma 5.8

● B and C2 imply D2 by Lemma 5.9

Notice all terms in A exist in D2 so we can directly imply D2 using A and since A was given to be
shorter than k, we can derive D2 by processing only clauses of length k - 1 or less

Prove Lemma 5.12

Want to show we can derive D by processing clauses with a maximum length of k - 1:

✓ E contains an opposite form term in A

✓ D is of length k

✓ D is of length k - 1

✓ E does not contain an opposite form term in A

Therefore in all cases we can derive D by processing only clauses with a maximum length of

k - 1

Prove Lemma 5.12 Checklist

Given an instance of 3SAT, you can expand all of the given clauses to the point where you are
considering clauses of length 𝑛.

If we want to consider a generic 𝑛-terminal clause, 𝐵, that’s implied by a given clause, 𝐴, then by
Lemma 5.6 we know it’s implied if all of the terms in 𝐴 exist in 𝐵

For example,

A := [a, b, c]
B := [a, b, c, …]

Since all the terms in A exist in B, then any and every term in the instance can exist in the rest
of B and all assignments blocked by B will be blocked by A

Lemma 5.13

If you expand given 3-t clauses as described in Lemma 5.13, you will derive 2n unique clauses of
length 𝑛 iff the instance is unsatisfiable

Want to show an unsatisfiable instance ⇒ 2n unique n-terminal clauses can be derived from the
given 3-t clauses

By lemma 5.4, a clause of length 𝑛 blocks 1 assignment.

Recall an instance is unsatisfiable iff all 2n assignments are blocked by the given 3-terminal
clauses

If a 3-terminal clause blocks an assignment, then it also implies the corresponding n-terminal
clause because there is one possible n-terminal clause for any given assignment

Since all 2n assignments are blocked and each assignment is blocked by a unique n-terminal
clause, then 2n n-terminal clauses can be implied by the given 3-terminal clauses

Lemma 5.14

Want to show 2n unique n-terminal clauses are derived by the given 3-t clauses =⇒ then the
instance is unsatisfiable.

By lemma 5.4, a clause of length 𝑛 blocks 1 assignment.

Therefore if there are 2n unique n-terminal clauses, then all 2n assignments will be blocked

Note that there will be no overlap because each n-terminal clause sets the value for each
terminal and overlap would imply the same terminal having two values by the same assignment
which is impossible

Prove Lemma 5.14

The n-terminal clauses described in Lemma 5.14 can be reduced to derive any pair of
contradicting 1-terminal clauses

Lemma 5.15

[a, b, c, …]

[a, b, -c, …]

[a, -b, c, …]

[a, -b, -c, …]

[-a, b, c, …]

[-a, b, -c, …]

[-a, -b, c, …]

[-a, -b, -c, …]

[a, b, …]

[a, -b, …]

[-a, b, …]

[-a, -b …]

[a, …]

[-a, …] …

[a]

[-a]

Figure 30. An example of reducing n-terminal
clauses to 1-terminal clauses

Algorithm:

Pick a terminal that will not exist in the final 1-terminal clauses

Notice half of the existing n-terminal clauses have that terminal assigned the value of False and
the other half have that terminal assigned the value of True.

Pick one clause that blocks an assignment where the terminal is True

Then there exists an assignment for each possible value for the remaining n-1 terminals

Therefore, there must exist another clause that shares all of the same terms, but where that one
terminal is assigned the value of False.

Using these two terms, we can create a new clause by lemma 5.7.

Now all of the clauses of length n - 1 do not contain that terminal.

Repeat this process while never selecting the same terminal twice until you are left with two
contradicting 1-terminal clauses

Prove Lemma 5.15

Contradicting 1-terminal clauses can be expanded to imply every possible clause

Let the following clauses be defined:

A := [a]
B := [-a]

C := [b, c, d, ...]
D := [a, b]

E := [-a, c, d, ...]

By lemma 5.8, we can expand to any clause that contains a or -a

Now want to show we can imply C which is a clause that that does not contain a or -a

By Lemma 5.8, we know A implies D, B implies E, and Lemma 5.9 can be used to show D and E
imply C

Therefore we can imply any clause containing a, -a, or neither, which encompasses every
possible clause

Lemma 5.16

Lemma 5.17
Given the following clauses

Where the clauses are as follows
● A, B, C, D are of length less than k
● E, F are of length k
● G is of length k or k - 1
● A and B imply E by Lemma 5.9
● C and D imply F by Lemma 5.9
● E and F imply G by Lemma 5.9

Then G can be derived by processing clauses with a maximum length of k - 1

Figure 31. An illustration of the described clauses

Let the clauses be defined as follows:

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]
𝐶 := [−𝑎, 𝑓 , 𝜙, 𝑗]
𝐷 := [𝑔, ℎ, 𝛾, −𝑗]

Then the following are implied by Lemma 5.9:

𝐸 = [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐹 = [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

𝐺 = [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Note than all terms in E come from A and B and all terms in F come from C and D

So the opposite form term in E and F have to exist in (A or B) and (C or D)

Since these are generic clauses, we can say the positive form exists in A and the negated term
exists in D

Prove Lemma 5.17

Let’s imply some additional clauses based on what we know about the opposite form terms
Recall the given clauses:

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]
𝐶 := [−𝑎, 𝑓 , 𝜙, 𝑗]
𝐷 := [𝑔, ℎ, 𝛾, −𝑗]

𝐸 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐹 := [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

𝐺 := [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Then we define some intermediate clauses:

𝐻 = [𝑏, 𝛽, 𝑖, 𝑓 , 𝜙, 𝑗] (By clauses 𝐴 and 𝐶 using Lemma 5.9)
𝐼 = [𝑐, 𝑑, 𝛿, 𝑏, 𝛽, 𝑓 , 𝜙, 𝑗] (By clauses 𝐵 and 𝐻 using Lemma 5.9)

𝐽 = [𝑔, ℎ, 𝛾, 𝑐, 𝑑, 𝛿, 𝑏, 𝛽, 𝑓 , 𝜙] (By clauses 𝐷 and 𝐼 using Lemma 5.9)

Notice J is exactly G and we only used clauses A, B, C, D, H, and I to derive J so want to show
all these clauses are shorter than k

Prove Lemma 5.17

Want to show A, B, C, D, H, and I are shorter than k

Recall A, B, C, and D were given as shorter than k so just want to show H and I are shorter than
k

For each of these claims, we have two cases

● G is of length k

● G is of length k - 1

Prove Lemma 5.17

❏ H is shorter than k

❏ G is of length k

❏ G is of length k - 1

❏ I is shorter than k

❏ G is of length k

❏ G is of length k - 1

Prove Lemma 5.17 Checklist

Want to show H is shorter than k when G is of length k

Since G is of length k, we can define k as follows

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

And the length of H is

Length of 𝐻 = 𝑏 + 𝑖 + 𝑓 + 𝑗 + 𝛽 + 𝜙 − (𝛽𝜙)

Want to show the length of H is less than k

𝑏 + 𝑖 + 𝑓 + 𝑗 + 𝛽 + 𝜙 − (𝛽𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

→ 𝑖 + 𝑗 < 𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) +
(𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Prove Lemma 5.17

Want to show the inequality holds:

→ 𝑖 + 𝑗 < 𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) +
(𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Which is true if at least three terms exist on the R.H.S.

Consider the following cases:

● None of the terms on the R.H.S. exist

● Exactly One of the terms on the R.H.S. exists

● Exactly Two of the terms on the R.H.S. exist

Prove Lemma 5.17

Consider case 1, where no terms exist in

𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾)
− (𝛽𝛿𝜙𝛾)

Recall some clauses

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]

But since no terms exist in {c, d}, this becomes

𝐵 := [−𝑖]

Note that no terms may exist in 𝛿 because any terms in 𝛿 could be extracted to count as 𝑐 or 𝑑.

Then a new derivation of 𝐸 occurs:

𝐸 := [𝑎, 𝑏, 𝛽]

Notice the length of E is one less than the length of A. This is a contradiction because the length
of E was given as k while the length of A was given as less than k. This case is impossible.

Prove Lemma 5.17

Consider case 2, where exactly one terms exists in

𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾)
− (𝛽𝛿𝜙𝛾)

Recall some clauses

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]

It was already shown to be impossible if no terms exist in {c, d} so the single existing term must
be in {c, d}.

Since c and d are generic terms, let’s pick c to be the term that exists. We redefine B:

𝐵 := [c, −𝑖]

Note that no terms may exist in 𝛿 because any terms in 𝛿 could be extracted to count as 𝑐 or 𝑑.

Then a new derivation of 𝐸 occurs:

𝐸 := [𝑎, 𝑏, c, 𝛽]

Prove Lemma 5.17

Now we have the clauses

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]

𝐸 := [𝑎, 𝑏, c, 𝛽]

Notice the length of E is the same as the length of A. This is a contradiction because the length

of E is given as k while the length of A is given as less than k. Therefore this case is impossible

and at least two terms must exist in the R.H.S. of the inequality

Prove Lemma 5.17

Consider case 3 where exactly two terms exist in

𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾)
− (𝛽𝛿𝜙𝛾)

As seen in case 2, at least two terms must exist in {c, d} so none of the remaining terms may
exist.

Recall the clauses

𝐶 := [−𝑎, 𝑓 , 𝜙, 𝑗]
𝐷 := [𝑔, ℎ, 𝛾, −𝑗]

𝐹 := [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Which get redefined based on the new requirements:

𝐷 := [−𝑗]
𝐹 := [−𝑎, 𝑓 , 𝜙]

It can be seen that the length of F is less than the length of C. This is a contradiction because
the length of C is given as less than k and and the length of F is given as k.

Prove Lemma 5.17

Since the cases where zero, one, and two terms exist on the R.H.S. are impossible, we know at
least three terms must exist on the R.H.S.

In such a case, the inequality is always true

Therefore H is shorter than k when the length of G is k

Prove Lemma 5.17

❏ H is shorter than k

✓ G is of length k

✓ No terms exist on the R.H.S. of the inequality

✓ Exactly one term exists on the R.H.S. of the inequality

✓ Exactly two terms exist on the R.H.S. of the inequality

❏ G is of length k - 1

❏ I is shorter than k

❏ G is of length k

❏ G is of length k - 1

Prove Lemma 5.17 Checklist

Want to show H is shorter than k when G is of length k - 1

In this case we define k and the length of H similarly to before:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔+ℎ +𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) +
(𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) +1

Length of 𝐻 = 𝑏 + 𝑖 + 𝑓 + 𝑗 + 𝛽 + 𝜙 − (𝛽𝜙)

Similarly to before, the inequality will become:

→ 𝑖 + 𝑗 <
𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 + 𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾)

− (𝛽𝛿𝜙𝛾) + 1

Which is true as long as at least two terms exist on the R.H.S.

It was already shown at least three terms must exist and that proof did not rely on the length of
G so the inequality is true here as well

The length of H is less than k when the length of G is k - 1

Prove Lemma 5.17

✓ H is shorter than k

✓ G is of length k

✓ No terms exist on the R.H.S. of the inequality

✓ Exactly one term exists on the R.H.S. of the inequality

✓ Exactly two terms exist on the R.H.S. of the inequality

✓ G is of length k - 1

❏ I is shorter than k

❏ G is of length k

❏ G is of length k - 1

Prove Lemma 5.17 Checklist

Want to show I is shorter than k when G is of length k

We define k in terms of G and define the length of I as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Length of 𝐼 = 𝑐 + 𝑑 + 𝑏 + 𝑓 + 𝑗 + 𝛿 + 𝛽 + 𝜙 − (𝛿𝛽) − (𝛿𝜙) − (𝛽𝜙) + (𝛿𝛽𝜙)

Want to show the length of I is less than k:

𝑐 + 𝑑 + 𝑏 + 𝑓 + 𝑗 + 𝛿 + 𝛽 + 𝜙 − (𝛿𝛽) − (𝛿𝜙) − (𝛽𝜙) + (𝛿𝛽𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Prove Lemma 5.17

The inequality becomes

𝑗

<

 𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Which is true as long as at least two terms exist on the R.H.S.

Prove Lemma 5.17

Want to show at least two terms exist in

 𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Suppose not, then a maximum of one term exists in the set
Recall some clauses

𝐶 := [−𝑎, 𝑓 , 𝜙, 𝑗]
𝐷 := [𝑔, ℎ, 𝛾, −𝑗]

𝐹 := [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Which get redefined
𝐷 := [x, −𝑗]

𝐹 := [−𝑎, 𝑓 , 𝜙, x]

Where x is at most a single term.

It is seen the length of F is at most the length of C. This is a contradiction because the length of
F was given as k and the length of C was given as less than k.

Therefore at least two terms must exist on the R.H.S. and the inequality is true

Prove Lemma 5.17

✓ H is shorter than k

✓ G is of length k

✓ No terms exist on the R.H.S. of the inequality

✓ Exactly one term exists on the R.H.S. of the inequality

✓ Exactly two terms exist on the R.H.S. of the inequality

✓ G is of length k - 1

❏ I is shorter than k

✓ G is of length k

❏ G is of length k - 1

Prove Lemma 5.17 Checklist

Want to show I is shorter than k when G is of length k - 1

We define k in terms of G and define the length of I as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Length of 𝐼 = 𝑐 + 𝑑 + 𝑏 + 𝑓 + 𝑗 + 𝛿 + 𝛽 + 𝜙 − (𝛿𝛽) − (𝛿𝜙) − (𝛽𝜙) + (𝛿𝛽𝜙)

Want to show the length of I is less than k:

𝑐 + 𝑑 + 𝑏 + 𝑓 + 𝑗 + 𝛿 + 𝛽 + 𝜙 − (𝛿𝛽) − (𝛿𝜙) − (𝛽𝜙) + (𝛿𝛽𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Prove Lemma 5.17

The inequality becomes

𝑗 < 𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Which is true as long as at least one terms exists on the R.H.S.

It was already shown that at least two terms must exist on the R.H.S. and the proof did not rely
on the length of G so the inequality is still true

Therefore the length of I is less than k when G is of length k - 1

Prove Lemma 5.17

✓ H is shorter than k
✓ G is of length k

✓ No terms exist on the R.H.S. of the inequality
✓ Exactly one term exists on the R.H.S. of the inequality
✓ Exactly two terms exist on the R.H.S. of the inequality

✓ G is of length k - 1
✓ I is shorter than k

✓ G is of length k
✓ G is of length k - 1

Since G can be derived by processing only A, B, C, D, H, and I and all of those clauses are
shorter than k, we can derive D by processing clauses with a maximum length of k - 1

Prove Lemma 5.17 Checklist

Given the following clauses

Where the following are true

● A, B, C are of length less than k

● D, E are of length k

● F is of length k or k - 1

Then F can be derived by processing clauses with a maximum length of k - 1

Lemma 5.18

Figure 32. An illustration of the described clauses

Let’s define some clauses
𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]
𝐶1 := [−𝑎, 𝑓 , 𝜙]
𝐶2 := [𝑒, 𝑓 , 𝜙]

𝐷 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐸1 := [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]
𝐸2 := [𝑒, 𝑓 , 𝜙, −𝑎, ℎ, 𝛾]

𝐹1 := [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]
𝐹2 := [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑒, 𝑓 , 𝜙, ℎ, 𝛾]

Where the following is true:
● A and B imply D by Lemma 5.9
● C1 expands to E1 by Lemma 5.8
● C2 expands to E2 by Lemma 5.8
● D and E1 imply F1 by Lemma 5.9
● D and E2 imply F2 by Lemma 5.9
● Where C has two possible cases: C1 or C2 as described in the following slides

Prove Lemma 5.18

Recall the implications

Since E and D imply F then E and D must share a term of the opposite form
Since A and B imply D then all terms in D come from A or B

So we have two cases for this opposite form term in E:

● It exists in C (use C1)
● It does not exist in C (use C2)

And for each of these cases we have to consider the two cases of F:

● F is of length k
● F is of length k - 1

Prove Lemma 5.18

Figure 33. An illustration of the described clauses

Want to show we can derive F by processing clauses with a maximum length of k - 1

❏ The opposite form term in E exists in C (use C1)

❏ F is of length k

❏ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Consider case 1 using C1 and F1

Then we define some additional clauses:

𝐺 = [𝑏, 𝛽, 𝑖, 𝑓 , 𝜙] (By clause A and 𝐶1 with Lemma 5.9)
𝐻 = [𝑏, 𝛽, 𝑓 , 𝜙, 𝑐, 𝑑, 𝛿] (By clause G and B with Lemma 5.9)

Recall F1

𝐹1 := [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Since all of the terms in H exist in F1, we can expand H using Lemma 5.8 to derive F1

We are able to derive F1 using clauses A, C1, B, G, and H

Want to show all of these are shorter than k

Prove Lemma 5.18

Want to show A, C1, B, G, and H are shorter than k

It was given that A, B, and C are all shorter than k so just want to show G and H are shorter
than k

Let’s update the checklist

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

❏ The opposite form term in E exists in C (use C1)

❏ G is shorter than k

❏ F is of length k

❏ F is of length k - 1

❏ H is shorter than k

❏ F is of length k

❏ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Want to show G is shorter than k when using F1 and F1 is of length k

Let’s define k in terms of F1 and the length of G as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Length of 𝐺 = 𝑏 + 𝑖 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

Want to show length of G < k

𝑏 + 𝑖 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Prove Lemma 5.18

The inequality becomes

 𝑖 < 𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 +𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) +
(𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Which is true as long as at least two terms exist on the R.H.S.

Want to show at least two terms exist on the R.H.S.

Prove Lemma 5.18

Want to show at least two terms exist in

𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 +𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾)
− (𝛽𝛿𝜙𝛾)

Suppose not, then at most one term exists on the R.H.S.
Recall the clauses

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐷 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]

We can redefine some clauses since at most one of the aforementioned clauses exist

𝐷 := [𝑎, 𝑏, 𝛽, x]

Where x is at most one term

Notice the length of D is the same as the length of A. This is a contradiction because it was
given that the length of A is less than k and the length of D is k.

Therefore at least two terms must exist on the R.H.S., the inequality is true, and G is shorter
than k when using F1 and the length of F1 is k

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

❏ The opposite form term in E exists in C (use C1)

❏ G is shorter than k

✓ F is of length k

❏ F is of length k - 1

❏ H is shorter than k

❏ F is of length k

❏ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Want to show G is shorter than k when using F1 and the length of F1 is k - 1

Let’s define k in terms of F1 and the length of G as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Length of 𝐺 = 𝑏 + 𝑖 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

Want to show length of G < k

𝑏 + 𝑖 + 𝑓 + 𝛽 + 𝜙 − (𝛽𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Prove Lemma 5.18

The inequality becomes

 𝑖 < 𝑐 + 𝑑 + 𝑔 + ℎ + 𝛿 +𝛾 − (𝛽𝛿) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) +
(𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Which is true as long as at least one term exists on the R.H.S.

We already showed at least two terms must exist on the R.H.S. and the proof did not rely on the
length of F1 so the inequality is still always true

Therefore the length of G is less than k when using F1 and F1 is of length k - 1

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

❏ The opposite form term in E exists in C (use C1)

✓ G is shorter than k

✓ F is of length k

✓ F is of length k - 1

❏ H is shorter than k

❏ F is of length k

❏ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Want to show H is shorter than k when using F1 and F1 is of length k

Let’s define k in terms of F1 and the length of H as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Length of 𝐻 = 𝑏 + 𝑓 + 𝑐 + 𝑑 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

Want to show length of H < k

𝑏 + 𝑓 + 𝑐 + 𝑑 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Prove Lemma 5.18

The inequality becomes

→ 0 < 𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Which is true as long as at least one term exists on the R.H.S.

Want to show at least one term exists on the R.H.S.

Prove Lemma 5.18

Want to show at least one term exists in

𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾)

Suppose not, then none of the aforementioned terms exist.
Recall the clauses

𝐶1 := [−𝑎, 𝑓 , 𝜙]
𝐸1 := [−𝑎, 𝑓 , 𝜙, 𝑔, ℎ, 𝛾]

Since we know some terms don’t exist, we can redefine some clauses:

𝐸1 := [−𝑎, 𝑓 , 𝜙]

Note that no terms may exist in 𝛾 because any term in 𝛾 could be extracted and treated as 𝑔 or ℎ

Notice E1 and C1 are exactly the same. This is a contradiction because the length of E was given
as k and the length of C was given as less than k.

Therefore at least one term exists on the R.H.S. and the inequality is true.

Therefore H is shorter than k when using F1 and F1 is of length k

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

❏ The opposite form term in E exists in C (use C1)

✓ G is shorter than k

✓ F is of length k

✓ F is of length k - 1

❏ H is shorter than k

✓ F is of length k

❏ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Want to show H is shorter than k when using F1 and F1 is of length k - 1

Let’s define k in terms of F1 and the length of H as follows:

𝑘 = 𝑏 +𝑐 +𝑑 + 𝑓 +𝑔 +ℎ + 𝛽 +𝛿 +𝜙 +𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Length of 𝐻 = 𝑏 + 𝑓 + 𝑐 + 𝑑 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

Want to show length of H < k

𝑏 + 𝑓 + 𝑐 + 𝑑 + 𝛽 + 𝛿 + 𝜙 − (𝛽𝛿) − (𝛽𝜙) − (𝛿𝜙) + (𝛽𝛿𝜙)

<

 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + ℎ + 𝛽 + 𝛿 + 𝜙 + 𝛾 − (𝛽𝛿) − (𝛽𝜙) − (𝛽𝛾) − (𝛿𝜙) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝜙)
+ (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Prove Lemma 5.18

The inequality becomes

→ 0 < 𝑔 + ℎ + 𝛾 − (𝛽𝛾) − (𝛿𝛾) − (𝜙𝛾) + (𝛽𝛿𝛾) + (𝛽𝜙𝛾) + (𝛿𝜙𝛾) − (𝛽𝛿𝜙𝛾) + 1

Which is always true

Therefore H is shorter than k when using F1 and F1 is of length k - 1

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

✓ The opposite form term in E exists in C (use C1)

✓ G is shorter than k

✓ F is of length k

✓ F is of length k - 1

✓ H is shorter than k

✓ F is of length k

✓ F is of length k - 1

❏ The opposite form term in E does not exist in C (use C2)

❏ F is of length k

❏ F is of length k - 1

Lemma 5.18 Checklist

Consider the case where the opposite form term from E does not exist in C (use C2)

Recall the implication graph:

Prove Lemma 5.18

Figure 34. An illustration of the described clauses

Recall the clauses

𝐴 := [𝑎, 𝑏, 𝛽, 𝑖]
𝐵 := [𝑐, 𝑑, 𝛿, −𝑖]
𝐶2 := [𝑒, 𝑓 , 𝜙]

𝐷 := [𝑎, 𝑏, 𝛽, 𝑐, 𝑑, 𝛿]
𝐸2 := [𝑒, 𝑓 , 𝜙, −𝑎, ℎ, 𝛾]

𝐹2 := [𝑏, 𝛽, 𝑐, 𝑑, 𝛿, 𝑒, 𝑓 , 𝜙, ℎ, 𝛾]

Here it is seen that all of the terms in C2 exist in F2 so we can simply expand C2 and derive F2
using Lemma 5.8

Since it is given that C2 is of length less than k, we can derive F2 by processing clauses with a
maximum length of less than k

Prove Lemma 5.18

Want to show we can derive F by processing clauses with a maximum length of k - 1

✓ The opposite form term in E exists in C (use C1)

✓ G is shorter than k

✓ F is of length k

✓ F is of length k - 1

✓ H is shorter than k

✓ F is of length k

✓ F is of length k - 1

✓ The opposite form term in E does not exist in C (use C2)

✓ F is of length k

✓ F is of length k - 1

Lemma 5.18 Checklist

Consider the clauses and implications

Where the following is true
● A and B are clauses of length less than k
● C and D are clauses of length k
● E is of length k or k - 1
● A expands to C by Lemma 5.8
● B expands to D by Lemma 5.8
● C and D imply E by Lemma 5.9

Then E can be implied by processing clauses with a maximum length of k - 1

Lemma 5.19

Figure 35. An illustration of the described clauses

Let’s define some clauses

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑐, 𝑑, 𝛿]

𝐶 := [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙]
𝐷 := [𝑐, 𝑑, 𝛿, 𝑔, ℎ, 𝛾]

𝐸 = [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙, 𝑐, 𝑑, 𝛿, 𝑔, ℎ, 𝛾]

In order for C and D to imply E by Lemma 5.7, they have to be identical except for one term
which is positive in one clause and negated in the other

There are 3 possible cases:

● the opposite form term does not exist in A or B

● the opposite form term exists in A or B

● the opposite form term exists in A and B

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

❏ the opposite form term does not exist in A or B

❏ the opposite form term exists in A or B

❏ the opposite form term exists in A and B

Lemma 5.19 Checklist

Consider the case where the opposite form term does not exist in A or B

Now we have the clauses:

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑐, 𝑑, 𝛿]

𝐶 := [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙]
𝐷 = [𝑐, 𝑑, 𝛿, -𝑒, ℎ, 𝛾]

𝐸 = [𝑎, 𝑏, 𝛽, 𝑓 , 𝜙, 𝑐, 𝑑, 𝛿, ℎ, 𝛾]

Notice all of the terms in A exist in E so we can expand A to derive E by Lemma 5.8

Since the length of A is given as less than k, we can derive E by processing clauses with a
maximum length of k - 1

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

✓ the opposite form term does not exist in A or B

❏ the opposite form term exists in A or B

❏ the opposite form term exists in A and B

Lemma 5.19 Checklist

Consider the case where the opposite form term exists in either A or B

Since C and D are treated the same, let’s pick A and D to share the opposite form term

Now we have the clauses:

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [𝑐, 𝑑, 𝛿]

𝐶 := [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙]
𝐷 = [𝑐, 𝑑, 𝛿, -𝑎, ℎ, 𝛾]

𝐸 = [𝑏, 𝛽, 𝑒, 𝑓 , 𝜙, 𝑐, 𝑑, 𝛿, ℎ, 𝛾]

Notice all of the terms in B exist in E so we can expand B by Lemma 5.8 and derive E

Since the length of B is given as less than k, we can derive E by processing clauses with a
maximum length of k - 1

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

✓ the opposite form term does not exist in A or B

✓ the opposite form term exists in A or B

❏ the opposite form term exists in A and B

Lemma 5.19 Checklist

Consider the case the opposite form term exists in A and B
Then we have the clauses

𝐴 := [𝑎, 𝑏, 𝛽]
𝐵 := [-𝑎, 𝑑, 𝛿]

𝐶 := [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙]
𝐷 = [-𝑎, 𝑑, 𝛿, 𝑔, ℎ, 𝛾]

𝐸 = [𝑏, 𝛽, 𝑒, 𝑓 , 𝜙, 𝑑, 𝛿, 𝑔, ℎ, 𝛾]

Now we can imply a new clause

𝐹 = [𝑏, 𝛽, 𝑑, 𝛿]

And since all of the terms in F exist in E, we can expand F to derive E using Lemma 5.8

Now want to show F is shorter than k

Two cases to consider: E is of length k and E is of length k - 1

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

✓ the opposite form term does not exist in A or B

✓ the opposite form term exists in A or B

❏ the opposite form term exists in A and B

❏ E is of length k

❏ E is of length k - 1

Lemma 5.19 Checklist

Want to show F is shorter than k when E is of length k

We can define k in terms of E and the length of F as follows:

𝑘 = 𝑏 + 𝑒 + 𝑓 + 𝑑 + 𝑔 + ℎ + 𝛽 + 𝜙 + 𝛿 + 𝛾 − (𝛽𝜙) − (𝛽𝛿) − (𝛽𝛾) − (𝜙𝛿) − (𝜙𝛾) − (𝛿𝛾) +
(𝛽𝜙𝛿) + (𝛽𝜙𝛾) + (𝜙𝛿𝛾) − (𝛽𝜙𝛿𝛾)

Length of 𝐹 = 𝑏 + 𝑑 + 𝛽 + 𝛿 − (𝛽𝛿)

Want to show the length of F < k

𝑏+𝑑 +𝛽 +𝛿 −(𝛽𝛿)

<

𝑏+𝑒 +𝑓 +𝑑 +𝑔+ℎ+𝛽 +𝜙 +𝛿 +𝛾 −(𝛽𝜙)−(𝛽𝛿)−(𝛽𝛾)−(𝜙𝛿)−(𝜙𝛾)−(𝛿𝛾)+(𝛽𝜙𝛿)+(𝛽𝜙𝛾)+(𝜙𝛿𝛾)−
(𝛽𝜙𝛿𝛾)

Prove Lemma 5.19

The inequality becomes

0 < 𝑒 + 𝑓 + 𝑔 + ℎ + 𝜙 + 𝛾 − (𝛽𝜙) − (𝛽𝛾) − (𝜙𝛿) − (𝜙𝛾) − (𝛿𝛾) + (𝛽𝜙𝛿) + (𝛽𝜙𝛾) + (𝜙𝛿𝛾) −
(𝛽𝜙𝛿𝛾)

Which is true as long as at least one term exists on the R.H.S.

Want to show at least one term exists on the R.H.S.

Prove Lemma 5.19

Want to show at least one term exists in:

𝑒 + 𝑓 + 𝑔 + ℎ + 𝜙 + 𝛾 − (𝛽𝜙) − (𝛽𝛾) − (𝜙𝛿) − (𝜙𝛾) − (𝛿𝛾) + (𝛽𝜙𝛿) + (𝛽𝜙𝛾) + (𝜙𝛿𝛾) −
(𝛽𝜙𝛿𝛾)

Suppose not, then none of the aforementioned terms exist

Recall we have the clauses

𝐴 := [𝑎, 𝑏, 𝛽]
𝐶 := [𝑎, 𝑏, 𝛽, 𝑒, 𝑓 , 𝜙]

Since those terms do not exist, we can redefine a clause:

𝐶 := [𝑎, 𝑏, 𝛽]

Notice A and C are exactly the same. This is a contradiction because the length of A is given as
less than k and the length of C is given as k.

Therefore at least one term must exist on the R.H.S. and the inequality is true

Therefore F is shorter than k when E is of length k

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

✓ the opposite form term does not exist in A or B

✓ the opposite form term exists in A or B

❏ the opposite form term exists in A and B

✓ E is of length k

❏ E is of length k - 1

Lemma 5.19 Checklist

Consider the case when E is of length k - 1
Want to show F is shorter than k when E is of length k - 1

We can define k in terms of E and the length of F as follows:

𝑘 = 𝑏 + 𝑒 + 𝑓 + 𝑑 + 𝑔 + ℎ + 𝛽 + 𝜙 + 𝛿 + 𝛾 − (𝛽𝜙) − (𝛽𝛿) − (𝛽𝛾) − (𝜙𝛿) − (𝜙𝛾) − (𝛿𝛾) +
(𝛽𝜙𝛿) + (𝛽𝜙𝛾) + (𝜙𝛿𝛾) − (𝛽𝜙𝛿𝛾) + 1

Length of 𝐹 = 𝑏 + 𝑑 + 𝛽 + 𝛿 − (𝛽𝛿)

Want to show the length of F < k

𝑏+𝑑 +𝛽 +𝛿 −(𝛽𝛿)

<

𝑏+𝑒 +𝑓 +𝑑 +𝑔+ℎ+𝛽 +𝜙 +𝛿 +𝛾 −(𝛽𝜙)−(𝛽𝛿)−(𝛽𝛾)−(𝜙𝛿)−(𝜙𝛾)−(𝛿𝛾)+(𝛽𝜙𝛿)+(𝛽𝜙𝛾)+(𝜙𝛿𝛾)−
(𝛽𝜙𝛿𝛾) + 1

Prove Lemma 5.19

The inequality becomes

0 < 𝑒 + 𝑓 + 𝑔 + ℎ + 𝜙 + 𝛾 − (𝛽𝜙) − (𝛽𝛾) − (𝜙𝛿) − (𝜙𝛾) − (𝛿𝛾) + (𝛽𝜙𝛿) + (𝛽𝜙𝛾) + (𝜙𝛿𝛾) −
(𝛽𝜙𝛿𝛾) + 1

Which is always true

Therefore F is shorter than k when E is of length k - 1

Prove Lemma 5.19

Want to derive E by processing clauses with a maximum length of k - 1

The opposite form term refers to a term of the opposite form shared between C and D

✓ the opposite form term does not exist in A or B

✓ the opposite form term exists in A or B

✓ the opposite form term exists in A and B

✓ E is of length k

✓ E is of length k - 1

Since we can derive E by processing clauses with a maximum length of k - 1 for all possible
cases of the lemma, then the lemma holds

Lemma 5.19 Checklist

Since 3SAT is NP-Complete according to Karp’s List of 21 NP-Complete problems and there
exists an algorithm to solve 3SAT in polynomial time,

P = NP

Conclusion

Douglas Coates, High School Accelerated STEM program coordinator

for instilling in me an insatiable desire to always keep learning

Dr. Eddie Cheng, Discrete Mathematics professor at Oakland University

for teaching me proof based mathematics and reasoning

Dr. Serge Kruk, Design and Analysis of Algorithms professor at Oakland University

for teaching me intuition about problem solving

Dr. Matthew Toeniskoetter, Theory of Computation professor at Oakland University

for teaching the best class I’ll ever take in such a perfect way

Special Thanks

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing,
STOC ’71, page 151–158, New York, NY, USA, 1971. Association for Computing Machinery.

Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972.

References

