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Abstract

This paper analyzes the use of diagonalization as applied by Georg
Cantor and Alan Turing and shows how their claims do not logically
follow from their respective proofs. In Cantor’s work, diagonalization
and contradiction are used to prove the set of infinite binary sequences
does “not have the power of the number-sequence 1, 2, 3, ..., v, ...”
i.e., the set is not enumerable. In Turing’s work, the diagonal process
and contradiction are used to prove the computable sequences are not
enumerable. Both proofs incorrectly use contradiction, due to the
fact that they assume the truth of two statements and recognize only
one. Namely, they assume (1) the set in question is enumerable and
(2) the proposed sequence is possible. It is seen that neither proof
can concretely and definitively disprove the first assumption as they
heavily rely on the second assumption.

Introduction

There are long accepted applications of diagonalization and contradiction
that are used to prove some sets are not enumerable. In [2], Cantor uses
diagonalization and contradiction to prove the claim that the set of infinite
binary sequences does “not have the power of the number-sequence 1, 2, 3,
..., v, ....” i.e., the set is not enumerable. Similarly, in [1], Turing uses the
diagonal process (his terminology for diagonalization) and contradiction to
prove the claim that the computable sequences are not enumerable.

This paper analyzes both applications and explains how each claim does
not logically follow from its proof. I would like to make it clear that this
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paper does not attempt to prove the opposite of their claims, rather it only
attempts to show these claims cannot be definitively concluded based solely
on these proofs.

The first two sections analyze Cantor’s and Turing’s applications of diag-
onalization and proof by contradiction and show how they incorrectly apply
contradiction. The final section has two parts. First, it provides a series of
example “proofs” which are similar in nature and incorrect for the same rea-
sons as the referenced applications. Next, it provides additional comments
on these applications to aid in gaining an understanding.

Cantor’s Claim

This section analyzes Georg Cantor’s application of diagonalization and con-
tradiction used to prove the claim that the set of infinite binary sequences is
not enumerable as seen in [2]. His proof follows:

[If] m and w are any two mutually exclusive characters... we
consider a set... M of elements

E = (x1, x2, ..., xv, ...)

which depend on infinitely many coordinates x1, x2, ..., xv, ... where
each of these coordinates is either m or w. Let M be the totality
of all elements E.

I now maintain that such a manifold M does not have the power
of the sequence 1, 2, ..., v, .... [M is not enumerable].

This follows from the following proposition:

’If E1, E2, ..., Ev, ... is any simply infinite... sequence of elements
of the manifoldM , then there is always an element E0 ofM which
corresponds to no Ev.’

For proof, let

E1 = (a1,1, a1,2, a1,v, ...),

E2 = (a2,1, a2,2, a1,v, ...),

...............

Eµ = (aµ,1, aµ,2, aµ,v, ...),

...............
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Here the aµ,v are determinatelym or w. We now define a sequence
b1, b2, bv, ..., such that bv is equal to m or w but is different from
av,v... If we then consider the element

E0 = (b1, b2, b3, ...)

of M one sees at once the equation

E0 = Eµ,

can be fulfilled by no integral value of µ, since otherwise for the
µ in question and for all integral values of v,

bv = aµ,v,

and so in particular we would have bµ = aµ,µ, which is excluded by
the definition of bv. From this proposition it follows immediately
that the totality of elements of M cannot be brought into the
sequential form:

E1, E2, ..., Ev, ...;

otherwise, we would have the contradiction that... E0 would be
an element of M as well as not an element of M .

This claim does not logically follow from the proof because Cantor makes
two assumptions to derive the contradiction: (1) the elements of M are
enumerable and (2) the description of E0 produces a valid sequence. Since
Cantor makes two assumptions, it cannot be concluded that the enumeration
of M allows for the contradiction.

The described sequence, E0, will never be possible; not necessarily be-
cause M is not enumerable, but because E0 is simply described an impossible
sequence. Recall the v-th figure of E0 is described as the opposite of the v-th
figure of the v-th element in the enumeration of M . Since E0 is described
as an element of M , it exists at some position, say µ. By the definition of
E0, the µ-th figure of E0 is the opposite of the µ-th figure of E0. This is
similar to the following example: Let A be an infinite binary sequence whose
n-th figure is the opposite of the n-th figure of A. Both A and E0 are simply
impossible sequences.
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Turing’s Claim

This section analyzes Alan Turing’s application of the diagonal process and
contradiction used to prove the claim that the computable sequences are not
enumerable as seen in [1]. His proof follows:

Or we might apply the diagonal process. “If the computable se-
quences are enumerable, let αn be the n-th computable sequence,
and let ϕn(m) be the m-th figure in αn. Let β be the sequence
with 1−ϕn(n) as its n-th figure. Since β is computable, there ex-
ists a number K such that 1−ϕn(n) = ϕK(n) [for] all n. Putting
n = K, we have 1 = 2ϕK(K), i.e. 1 is even. This is impossible.
The computable sequences are therefore not enumerable”.

This claim does not logically follow from the proof because Turing makes
two assumptions to derive the contradiction: (1) the computable sequences
are enumerable and (2) β is computable. Since Turing makes two assump-
tions, it cannot be concluded that the enumeration of the computable se-
quences allows for the contradiction. Turing recognizes the second assump-
tion as he writes:

The fallacy in this argument lies in the assumption β is com-
putable. It would be true if we could enumerate the computable
sequences by finite means... The simplest and most direct proof
of this is by showing that, if this general process [equivalent to
enumerating the computable sequences] exists, then there is a
machine which computes β.

I would like to point out that the description of β will never produce a
valid sequence. Not necessarily because the computable sequences are not
enumerable, but because β is simply described as an impossible sequence.
Recall we assume β is computable and the computable sequences are enu-
merable. Therefore β exists in the enumeration, say at position K. The
K-th figure of β is therefore 1− the K-th figure of β. This is similar to the
following example: Let A be an infinite binary sequence whose n-th figure
is the opposite of the n-th figure of A. Both A and β are simply impossible
sequences.
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General Scenario

This section presents a general scenario with a description of an impossible
sequence and proof by contradiction similar to the referenced applications.

Let p be a statement whose truth is in question. Let q be a description of
an object (a set, sequence, etc. or anything that can derive a contradiction
through self reference) as follows: “if p is true, construct an impossible object,
otherwise if p is false, construct a possible object.” We then apply a proof
by contradiction: Suppose p is true. Then by using q, we can construct an
impossible object and derive a contradiction. Therefore p must be false.

It is seen here that the truth of p does not matter and the proof depends
nearly entirely on the description of q. This is similar to the referenced
applications in that all the proofs take the following steps: (1) assume the
truth of the statement in question, (2) propose an impossible sequence based
on the statement in question (and assume this sequence is possible), (3)
derive a contradiction, and (4) conclude the first statement is false.

This feels like an attractive proof by contradiction because assuming the
truth of the statement in question allows for a contradiction while assuming
the falsehood of the statement in question does not. However, this is only
the case because the second assumption (that the sequence is possible) does
not exist without assuming the truth of the statement in question (due to the
fact that the sequence cannot even be defined without assuming the truth of
statement in question); therefore, any problems in either assumption will be
alleviated upon assuming the falsehood of the statement in question.

The key to understanding this is recognizing that these proofs make the
additional assumption that the proposed sequence is possible. Recognizing
this, it is seen that this second assumption can allow for the contradiction
and the truth of first assumption cannot be held entirely responsible for the
contradiction. Since the first assumption cannot be held entirely responsible
for the contradiction, the claims in the referenced applications do not logically
follow from their respective proofs.

Examples and Additional Comments

This section provides examples of incorrectly applying proof by contradic-
tion as well as additional comments to bridge the gap between the general
scenario and the referenced applications. To repeat the problem at hand, the
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following examples work similarly to the referenced applications in that they
(1) assume the truth of the statement in question, (2) propose an impossible
sequence based on the statement in question (and assume this sequence is
possible), (3) derive a contradiction, and (4) conclude the first statement is
false.

Example 1

Suppose there exists a positive integer, K, which is fixed, yet arbitrarily
large. Construct an infinite binary sequence, B, such that the n-th figure of
B is 1 except for the K-th figure of B, which is the opposite of the K-th
figure of B. The K-th figure of B cannot be 1, because then the K-th figure
of B must be 0. Similarly, the K-th figure of B cannot be 0 because then
the K-th figure of B must be 1. This is a contradiction. Therefore a fixed,
yet arbitrarily large number cannot exist.

Example 2

Let M be the set of infinite binary sequences. Assume there exists a set, P ,
of all possible subsets of M where each set in P contains a single element of
M . Let PC be a set in P containing the infinite binary sequence C, as yet
to be defined. Since there is only one element in PC , enumerate the set with
i = 1. Let C be an infinite binary sequence of 1’s except the i-th figure in
C is the opposite of the i-th figure of the i-th element in PC . Since C is an
infinite binary sequence, it is in M . Since C is in M , it exists in one of the
sets in P . Therefore we can refer to the set containing C as PC . The i-th
element of C will always be the opposite of the i-th element of C. This is
impossible. Therefore there cannot exist a set of all possible subsets of M
where each subset contains a single element of M .

Additional Comments

This subsection contains additional comments regarding the proofs seen thus
far in order to aid in gaining an understanding.

Given the current assumptions of the laws of the universe, we can imagine
the description of a sequence, A, where the n-th figure of A is the opposite
of the n-th figure of A. Naturally, we do not conclude we have assumed
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the truth of a false statement: we can clearly see the description of A is
problematic and produces an impossible sequence.

Consider one of the referenced applications, say the set of infinite binary
sequences is enumerable. In an environment where this statement is assumed
to be a true fact of the universe, it would be natural to see the proposed de-
scription does not produce a possible sequence. Just as above we conclude
the description of A is invalid rather than concluding we have assumed the
truth of a false statement, here we naturally conclude the proposed descrip-
tion is invalid rather than concluding the first assumption (the set of binary
sequences is enumerable) is false.

Conclusion

It is seen the proposed applications of diagonalization and proof by contra-
diction improperly use contradiction due to the fact that they assume the
truth of two statements and recognize only one. It seems it is especially easy
to fall into this trap when applying diagonalization since both of the refer-
enced applications use diagonalization to construct an object and unknow-
ingly make the assumption this object is valid. The definition of this object
is dependent on the statement in question so problems in either assumption
are alleviated when the original statement is assumed to be false (here the
second assumption cannot even be defined without the first assumption).
Since two assumptions are made, it cannot be said that the first assumption
(that the set in question is enumerable) alone allows for the derivation of the
contradiction. Applications of diagonalization and proof by contradiction
done in the same way as the referenced applications are incorrect and do not
allow for conclusions similar to those claimed.
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